Linking Exponential Components to Kinetic States in Markov Models for Single-Channel Gating
نویسندگان
چکیده
Discrete state Markov models have proven useful for describing the gating of single ion channels. Such models predict that the dwell-time distributions of open and closed interval durations are described by mixtures of exponential components, with the number of exponential components equal to the number of states in the kinetic gating mechanism. Although the exponential components are readily calculated (Colquhoun and Hawkes, 1982, Phil. Trans. R. Soc. Lond. B. 300:1-59), there is little practical understanding of the relationship between components and states, as every rate constant in the gating mechanism contributes to each exponential component. We now resolve this problem for simple models. As a tutorial we first illustrate how the dwell-time distribution of all closed intervals arises from the sum of constituent distributions, each arising from a specific gating sequence. The contribution of constituent distributions to the exponential components is then determined, giving the relationship between components and states. Finally, the relationship between components and states is quantified by defining and calculating the linkage of components to states. The relationship between components and states is found to be both intuitive and paradoxical, depending on the ratios of the state lifetimes. Nevertheless, both the intuitive and paradoxical observations can be described within a consistent framework. The approach used here allows the exponential components to be interpreted in terms of underlying states for all possible values of the rate constants, something not previously possible.
منابع مشابه
Kinetic time constants independent of previous single-channel activity suggest Markov gating for a large conductance Ca-activated K channel
Models for the gating of ion channels usually assume that the rate constants for leaving any given kinetic state are independent of previous channel activity. Although such discrete Markov models have been successful in describing channel gating, there is little direct evidence for the Markov assumption of time-invariant rate constants for constant conditions. This paper tests the Markov assump...
متن کاملGating scheme for single GABA-activated Cl- channels determined from stability plots, dwell-time distributions, and adjacent-interval durations.
To study the gating of a GABA-activated Cl- channel, currents from single channels activated by 1.0 microM GABA were examined in patches of membrane excised from cultured chick cerebral neurons. The distributions of open and shut interval durations were each described by the sum of 3 exponential components, suggesting that the channel normally enters at least 3 open and 3 shut states. Five diff...
متن کاملKinetic Structure of Large-Conductance Ca2+-activated K+ Channels Suggests that the Gating Includes Transitions through Intermediate or Secondary States
Mechanisms for the Ca2+-dependent gating of single large-conductance Ca2+-activated K+ channels from cultured rat skeletal muscle were developed using two-dimensional analysis of single-channel currents recorded with the patch clamp technique. To extract and display the essential kinetic information, the kinetic structure, from the single channel currents, adjacent open and closed intervals wer...
متن کاملModal gating of endplate acetylcholine receptors: A proposed mechanism
435 C o m m e n t a r y Decades ago as a beginning graduate student, one of us (K.L.M.) was studying short-term synaptic plasticity at the neuromuscular synapse. The responses were generally consistent from day to day, but there was some variability. At that time, K.L.M. naively thought that if it were possible to directly study the macromolecular building blocks underlying neuromuscular transm...
متن کاملEvidences for a new cation channel in the brain mitochondrial inner membrane
Introduction: Previous studies and our works have indicated several cation channels in the rat brain mitochondrial inner membrane. In this work, we report the single-channel characterization of a cation channel from the rat brain mitochondrial inner membrane incorporated into a planar lipid bilayer. Methods: After removing and homogenizing the adult rat brain, its supernatant was centrifuged...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 132 شماره
صفحات -
تاریخ انتشار 2008